Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord
نویسندگان
چکیده
Activation of CNS resident microglia and invasion of external macrophages plays a central role in spinal cord injuries and diseases. Multiphoton microscopy based on intrinsic tissue properties offers the possibility of label-free imaging and has the potential to be applied in vivo. In this work, we analyzed cellular structures displaying endogenous two-photon excited fluorescence (TPEF) in the pathologic spinal cord. It was compared qualitatively and quantitatively to Iba1 and CD68 immunohistochemical staining in two models: rat spinal cord injury and mouse encephalomyelitis. The extent of tissue damage was retrieved by coherent anti-Stokes Raman scattering (CARS) and second harmonic generation imaging. The pattern of CD68-positive cells representing postinjury activated microglia/macrophages was colocalized to the TPEF signal. Iba1-positive microglia were found in areas lacking any TPEF signal. In peripheral areas of inflammation, we found similar numbers of CD68-positive microglia/macrophages and TPEF-positive structures while the number of Iba1-positive cells was significantly higher. Therefore, we conclude that multiphoton imaging of unstained spinal cord tissue enables retrieving the extent of microglia activation by acquisition of endogenous TPEF. Future application of this technique in vivo will enable monitoring inflammatory responses of the nervous system allowing new insights into degenerative and regenerative processes.
منابع مشابه
Two-photon excited hemoglobin fluorescence provides contrast mechanism for label-free imaging of microvasculature in vivo.
Direct visualization of microvasculature provides significant insights in microcirculation and critically impacts the diagnosis and treatment of microcirculatory diseases. Recently, we discovered that the high-energy Soret fluorescence of hemoglobin peaked at 438 nm with an extremely short lifetime becomes strongly visible under two-photon excitation. Based on the distinct spectral and temporal...
متن کاملLabel-free in vivo imaging of human leukocytes using two-photon excited endogenous fluorescence.
We demonstrate that two-photon excited endogenous fluorescence enables label-free morphological and functional imaging of various human blood cells. Specifically, we achieved distinctive morphological contrast to visualize morphology of important leukocytes, such as polymorphonuclear structure of granulocyte and mononuclear feature of agranulocyte, through the employment of the reduced nicotina...
متن کاملIn vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence.
Zebrafish has rapidly evolved as a powerful vertebrate model organism for studying human diseases. Here we first demonstrate a new label-free approach for in vivo imaging of microvasculature, based on the recent discovery and detailed characterization of the two-photon excited endogenous fluorescence in the blood plasma of zebrafish. In particular, three-dimensional reconstruction of the microv...
متن کاملIn Vivo nonlinear optical imaging of immune responses: tissue injury and infection.
In this study, we demonstrate a noninvasive imaging approach based on multimodal nonlinear optical microscopy to in vivo image the responses of immune cells (neutrophils) to the tissue injury and bacterial infection in a zebrafish model. Specifically, the second harmonic generation from myosin thick filaments in sarcomere enabled a clear visualization of the muscle injury and infection. Two-pho...
متن کاملCellular and Molecular Mechanisms Involved in Neuroinflammation after Acute Traumatic Spinal Cord Injury
Introduction: Spinal cord injury (SCI) following traumatic events is associated with the limited therapeutic options and sever complications, which can be partly due to inflammatory response. Therefore, this study aims to explore the role of inflammation in spinal cord injury. The findings showed that the pathological conditions of nervous system lead to activation of microglia, astrocyte, neut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015